skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gavery, Mackenzie R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The recent rise of ‘omics and other molecular research technologies alongside improved techniques for tissue preservation have broadened the scope of marine mammal research. Collecting biological samples from wild marine mammals is both logistically challenging and expensive. To enhance the power of marine mammal research, great effort has been made in both the field and the laboratory to ensure the scientific integrity of samples from collection through processing, supporting the long‐term use of precious samples across a broad range of studies. However, identifying the best methods of sample preservation can be challenging, especially as this technological toolkit continues to evolve and expand. Standardizing best practices could maximize the scientific value of biological samples, foster multi‐institutional collaborative efforts across fields, and improve the quality of individual studies by removing potential sources of error from the collection, handling, and preservation processes. With these aims in mind, we summarize relevant literature, share current expert knowledge, and suggest best practices for sample collection and preservation. This manuscript is intended as a reference resource for scientists interested in exploring collaborative studies and preserving samples in a suitable manner for a broad spectrum of analyses, emphasizing support for ‘omics technologies. 
    more » « less
  2. Epigenetics has attracted considerable attention with respect to its potential value in many areas of agricultural production, particularly under conditions where the environment can be manipulated or natural variation exists. Here we introduce key concepts and definitions of epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, review the current understanding of epigenetics in both fish and shellfish, and propose key areas of aquaculture where epigenetics could be applied. The first key area is environmental manipulation, where the intention is to induce an ‘epigenetic memory’ either within or between generations to produce a desired phenotype. The second key area is epigenetic selection, which, alone or combined with genetic selection, may increase the reliability of producing animals with desired phenotypes. Based on aspects of life history and husbandry practices in aquaculture species, the application of epigenetic knowledge could significantly affect the productivity and sustainability of aquaculture practices. Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may upend traditional assumptions about selection practices. Ultimately, there are still many unanswered questions regarding how epigenetic mechanisms might be leveraged in aquaculture. 
    more » « less
  3. Abstract There is a growing focus on the role of DNA methylation in the ability of marine invertebrates to rapidly respond to changing environmental factors and anthropogenic impacts. However, genome‐wide DNA methylation studies in nonmodel organisms are currently hampered by a limited understanding of methodological biases. Here, we compare three methods for quantifying DNA methylation at single base‐pair resolution—whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and methyl‐CpG binding domain bisulfite sequencing (MBDBS)—using multiple individuals from two reef‐building coral species with contrasting environmental sensitivity. All methods reveal substantially greater methylation inMontipora capitata(11.4%) than the more sensitivePocillopora acuta(2.9%). The majority of CpG methylation in both species occurs in gene bodies and flanking regions. In both species, MBDBS has the greatest capacity for detecting CpGs in coding regions at our sequencing depth, but MBDBS may be influenced by intrasample methylation heterogeneity. RRBS yields robust information for specific loci albeit without enrichment of any particular genome feature and with significantly reduced genome coverage. Relative genome size strongly influences the number and location of CpGs detected by each method when sequencing depth is limited, illuminating nuances in cross‐species comparisons. As genome‐wide methylation differences, supported by data across bisulfite sequencing methods, may contribute to environmental sensitivity phenotypes in critical marine invertebrate taxa, these data provide a genomic resource for investigating the functional role of DNA methylation in environmental tolerance. 
    more » « less